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Machine Learning Project Summary

We investigate the claimed effectiveness of Rec-R1, a newly proposed reinforcement learning framework for combin-
ing large language models and recommendation systems.

Project Scope

The goal of our project was to replicate the results of the Rec-R1 paper using its existing GitHub repository. Specif-
ically, we wanted to confirm their claims that their reinforcement learning method improved upon supervised-fine-
tuning and baseline methods, was more computationally efficient than other methods, and maintained or improved
the large language model’s general-purpose abilities after training.

Methodology

We used the authors’ provided code and datasets in the repository [1] associated with the paper to verify their find-
ings. While this did not require creating new models or training pipelines, there was a significant amount of trial and
error required to successfully train and evaluate the models. We trained sparse and dense retriever variants of the
base model used for the Rec-R1 framework, Qwen-2.5-3B-Instruct. The datasets used for training included ESCI
[2], Amazon C4 [3], and Amazon Beauty [3]. Since the paper’s specified GPUs for training, two 80GB A100s, are
not available in Hyak, we used two 48GB L40/L40s GPUs with reduced tensor parallelization. The training time
required for each model varied from 7 hours to 20 hours for a single epoch. Due to time constraints, some model
comparisons were made with checkpoints from a single epoch rather than the original amount in the authors’ code.
We did not attempt SFT result replication, because — as the authors state — the SFT results converge to the teacher,
making teacher model baselines a sufficient comparison.

Results

We found that we could replicate the evaluation results of the paper, but we struggled to confirm their claim of com-
putational efficiency offered by the framework. We were able to achieve similar evaluation scores in all of the ex-
perimental setups tried by the authors. However, we could only train our models for at most half of the epochs the
authors trained for or even only for 1 epoch. Finally, we confirmed the authors’ claims that general reasoning capabil-
ities did not deteriorate after post-training and got very similar benchmark results to the authors.

What was Easy

It was easy to access the necessary materials to reproduce the study, as everything was open-source. The code-base,
the datasets and the models used in this study could all be found and used through the repository created by the
original authors.

What was Difficult

Replicating the Rec-R1 paper proved highly difficult in that we struggled to navigate through the poor documentation
and the disorganized structure of the repository. Additionally, the paper required a lot of computational power, requir-
ing us to use the UW Hyak clusters that were often in shortage and underpowered compared to clusters used in the
paper.
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1 Introduction

The goal of this project is to replicate the results of the Rec-R1 paper [4]. This paper proposed a new framework that
combines large language models (LLMs) and recommendation systems (RecSys) through a closed feedback loop
where a reward signal from the recommendation system updates model weights of the LLM.

This framework was proposed in light of issues from utilizing LLMs in recommendation tasks. Existing approaches
such as prompting and supervised fine-tuning (SFT) see LLMs and recommendation model as separate components
without connecting them with a closed feedback loop. As a result, LLMs are optimized for recommendation through
proxy objectives that may not completely align with the task. For instance, one can generate SFT data using another
closed source LLM or they can get higher quality data through human annotation. Both options are costly in time
and money and don’t have a way of obtaining a gradient update based on a feedback signal from the RecSys, leaving
the LLM and the RecSys as disjoint systems.

Rec-R1 addresses these issues by joining the RecSys and LLM using reinforcement learning (RL). Given a user
input, the LLM generates an input for the RecSys. The RecSys then uses a rule-based metric (e.g., NDCG, Recall) to
evaluate the input which is turned into a reward signal for the LLM [4, Section 1].

The results from the paper evaluated Rec-R1 against SFT and prompting in product search and sequential recom-
mendation tasks. The paper found that Rec-R1 significantly improves over SFT and prompting in both tasks, and
Rec-R1 showed strong performance even in the cold-start scenario for sequential recommendation [4, 3.2.2 Results].
Additionally, Rec-R1 required far less time and money to achieve the same performance as SFT on these tasks [4,
Appendix D]. Finally, the Qwen-2.5-3B-Instruct LLM was also evaluated to see if its general purpose reasoning
capabilities were maintained after SFT and Rec-R1’s RL training. The paper found that LLM reasoning dropped
in quite a few situations after SFT (especially on GSM8K and IFEval) but Rec-R1 almost always maintained or
improved LLM performance after RL training compared to the baseline Qwen-2.5-3B-Instruct LLM [4, Appendix
E.3].

2 Scope of the Project

Our goal was to attempt to replicate and evaluate the authors’ key claims that Rec-R1 can effectively optimize the
development of large language model by making data distillation much more resource-efficient while improving
the performance of the resulting model [4, Section 1]. Due to time and resource constraints we limit ourselves to a
reproduction of the metrics for the Rec-R1 framework itself and use the reference scores from the original paper for
the baselines from other frameworks and models.

2.1 Addressed Claims/Hypothesis from the Original Paper

Being more specific, we were testing the following two claims from [4, Section 1]:

• Claim 1: Rec-R1 achieves comparable or superior performance than prompting and SFT tools in optimiz-
ing LLM generation with less computational cost.

• Claim 2: Rec-R1-optimized language models improve the ability of an LLM to retain its general-purpose
abilities over time.

Being even more specific, we were testing the two aforementioned claims by trying to replicate the following results
from [4, Section 3]:

• Claim 1 Result: Rec-R1-optimized large language models (Qwen and gpt-4o, in our case) exhibit higher
retrieval performance than prompting-only baselines and SFT versions of the model as measured by
NDCG@100 and Recall@k for ESCI, Amazon-C4, and Amazon Beauty datasets (which will be discussed
further in Section 3) [4, Section 3].

• Claim 2 Result: Rec-R1-optimized large language model (Qwen, in our case) achieves an NDCG@100
score as much or higher than that of the non-optimized version of the model on general-purpose reasoning
datasets IFEval, GSM8K, MBPP, and HumanEval [4, Appendix E.3.2].
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3 Methodology

3.1 Dataset

To replicate the Rec-R1 paper, we used the same datasets the researchers used for training and testing the model:
ESCI [2] and Amazon-C4 [3] for product search, and the Amazon Beauty Dataset for the sequential recommenda-
tion [4, Sec 3.1.1 and 3.2.1]. Both Amazon Beauty and Amazon-C4 are constructed from a larger dataset, Amazon
Reviews [3]. Within the ESCI [2] dataset, the authors focus on the subcategories of Video Games, Baby Products,
Office Products, and Sports and Outdoors. The subcategory specific data splits contain 4510 training samples, 898
validation samples, and 798 test samples per category. The Amazon C4 [3] dataset is included because it shares the
same task domain as ESCI, but the queries are expressed in natural language. This dataset only has category labels
for test queries so consistent with the authors of the framework, we use the prior listed subdomains as the test set
to obtain results comparable with those from the ESCI trained models. Each of the queries were modified with a
template similar to Figure 1. The datasets were available through the Rec-R1 GitHub repository [1]. Although the
repository included predefined splits, we created our own train, validation, and test sets to maintain control over the
evaluation process and ensure consistency in our replication.

Figure 1: Prompt Template for Rec-R1 + BM25 for Product Search

3.2 Coding

We used the authors’ code [1] to attempt to reproduce their results. As the aim is to reproduce the original results,
we decided to rely on the original code for implementation. However, due to issues encountered during the initial
experiments, some changes have been made to the original code — mainly to resolve compatibility issues within the
frameworks used. As the authors relied on older versions of the frameworks some of which are no longer available,
we’ve been required to make some updates to the frameworks in use.

The Rec-R1 training framework is model agnostic and adapted for sparse and dense retrievers [4, Appendix E.1.2].
The sparse retriever implementation uses Pyserini [5] with Lucene’s BM25 [6] implementation.

Dense retrieval uses HNSW-based FAISS indices [7]. The embeddings used for FAISS were experimented with
several different embedding models, primarily BLAIR [8] and RoBERTa [9]. BLAIR and RoBERTa were also used
as discriminators for comparison studies along with gpt-4o [10] and Qwen-2.5-3B-Instruct [11].

The language model used during fine-tuning was initialized from Qwen-2.5-3B-Instruct [11]. Due to resource limita-
tions, smaller versions of the model were also used for testing during development stages of the project.
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All of our codes are hosted on our GitHub repository Rec-R1_magic. The repository is a modified version of
the authors’ original code repository [1] and is publicly accessible at the following link: https://github.com/
yehchanyoo/Rec-R1_magic

3.3 Computational Feasibility

The Rec-R1 framework was designed with computational efficiency as a key priority and as such did not require
excessive amounts of compute. The GPUs used for training the models in the original study were two Nvidia A100
with 80 GB of VRAM. The memory utilization of these GPUs was described as capped to 30 percent of the total ca-
pacity of these GPUs, with the runtime for the fine tuning limited to only 210 seconds using this setup [4, Appendix
D]. The measurement of time for fine tuning was mentioned to be the time necessary to match the performance of
a model trained for two epochs using SFT. The two epoch SFT ran for 35 minutes on the authors setup, but training
details in terms of number of steps required to achieve comparable performance using Rec-R1 was not mentioned.

For our computational resources, we’ve used Hyak, where we have access to L40 and L40s GPUs through the RCC
account [12]. These have less memory compared to the A100’s used in the original study; however, due to the low
utilization of the GPUs in the original paper, replicating limited results of the paper was feasible [4].

Our experiments showed that the framework ran with the Qwen-2.5-3B-Instruct [11] using the distributed mode on
two L40 or L40s GPUs. A minor author-proposed modification was necessary to make the code more efficient in
VRAM usage. A single GPU proved to be insufficient with out-of-memory errors, which required us to limit the
model size to the Qwen-2.5-0.5B-Instruct [11] for initial testing. The OOM issues encountered were unexpected,
as we initially estimated that a single GPU would be sufficient considering the descriptions of VRAM usage in the
original paper. The reason behind this appears to be the number of jobs parameter, which was originally set to 12 but
was reduced to 2 for our training. This also reduced the time required for training on L40/L40s GPUs, as it reduced
the time required for moving data between the GPUs to the CPUs. However, the time necessary for fine-tuning still
far exceeded the time noted in the original paper, which was likely a consequence of the lower VRAM.

4 Results/Summary

4.1 ESCI

We recorded the normalized discounted cumulative gain for the top 100 items retrieved (NDCG@100), which mea-
sures how well items were ranked as well as how relevant they are. We found that we could replicate the original
paper’s results with at worst about 8% off of the paper’s results with only 5 epochs of training compared to their 10
epochs of training, as shown in Table 1.

Table 1: NDCG@100 for Sparse Retrieval on ESCI

Model Video Games Baby Products Office Products Sports & Outdoors
BM25 12.44 15.12 23.96 19.48
GPT-4o + BM25 26.06 23.05 27.98 27.38
Qwen-2.5-3B-Instruct + BM25 19.63 16.03 19.96 21.36
Rec-R1-3B + BM25 33.89 29.27 34.61 31.92
Rec-R1-3B + BM25 (Repro) 26.16 27.91 34.38 30.99

4.2 Amazon C4

The authors used the Amazon C4 [3] dataset to measure how models optimized with the proposed framework per-
form on a complex natural language product search task. They also used NDCG@100 as the evaluation metric for
this dataset to allow easy comparisons with the ESCI results [4, Section 3.1]. Given the computation and time con-
straints discussed in Section 3.3, we decided to only train the model for 1 epoch and only use BLAIR-BASE dense
retriever. The results we obtain in Figure 2 for the BM25 retriever show impressive gains by nearly doubling the
best-performing sparse baselines. However, these results still fall between 19% and 25% below the NDCG scores
the authors obtained for the test subsets. The incremental gains over one epoch suggest that the scores presented are
attainable over approximately 5 epochs of training. However, we remain doubtful of the computational efficiency
claims in Figure 1 (b) of the paper. The authors claim that tuning Qwen-2.5-3B-Instruct only took 210 seconds [4,
Figure 1]. But our time measurements of 11 hours for the sparse retriever and 7 hours for BLAIR-BASE resemble

4

https://github.com/linjc16/Rec-R1
https://github.com/yehchanyoo/Rec-R1_magic
https://github.com/yehchanyoo/Rec-R1_magic
https://www.nvidia.com/en-us/data-center/a100/
https://hyak.uw.edu/
https://www.nvidia.com/en-us/data-center/l40/
https://www.nvidia.com/en-us/data-center/l40s/
http://depts.washington.edu/uwrcc/hyak/


the SFT training times in Figure 1(b) of the original paper [4, Figure 1]. Similar to the authors, we will not com-
pare our results directly to the SFT baselines, since the learned policies converge to the teacher model baseline [4,
Theorem 1].

Figure 2: Amazon C4 Results

4.3 Amazon Beauty

The authors also use the Amazon Beauty dataset to test how Rec-R1 optimized models perform on sequential recom-
mendation tasks. Sequential recommendation tasks involve finding the most relevant item to recommend next to a
user based on that user’s past purchase history. Here, the authors also use NDCG and Recall metrics to evaluate the
recommendation results [4, Section 3.2].

Due to a lack of computational resources, we decided to train the model for 1 epoch only and for a maximum of 400
steps using the BM25 retriever and the frozen Qwen-2.5-3B-Instruct LLM.

We also ran the training process under both transductive and inductive settings.

• Transductive setting: Test items are in the training set [4, Section 3.2.1].

• Inductive setting: Test items are not in the training set [4, Section 3.2.1].

Despite the limited number of runs and epochs, we were able to achieve scores that were fairly similar to the scores
achieved in the paper with 50 full epochs [1]. The results can be seen in Figure 3. While the replication results had
lower scores in both settings for all metrics (Recall@, NDCG@), the replication results had metrics fairly close to
the actual results — especially for NDCG@ scores under transductive settings. Additionally, similar to the results
stated in the original paper, the replication results showed the model struggling with sequential recommendation
(with less than 10% scores), especially under transductive settings with lower scores across the board than under
inductive settings [4, Section 3.2.2].

4.4 Generalization

Despite the lack of evidence for the authors’ reported computational efficiency, we did find evidence for their claims
that models optimized using the Rec-R1 framework retained general-purpose abilities better than SFT optimized
models [4, Section 3.3]. In Table 2, we saw that the Rec-R1 model trained using the BLAIR-BASE dense retriever
was able to score higher than the Qwen Instruct baseline and match the authors’ Rec-R1 IFEval score. Other scores
were similarly close to the authors or higher. Considering these models were trained for much less epochs than the
authors’ models, we expected the scores to fall somewhere between the baseline and the authors’ model.

5



Figure 3: Amazon Beauty Results: Replication vs. Paper

Table 2: Model Generalization Across Benchmarks

Model ESCI MMLU IFEval GSM8K MBPP HumanEval
Qwen-2.5-3B-Instruct (Baseline) 19.3 65.4 58.2 63.4 53.6 46.3
Qwen-2.5-3B-Instruct (SFT) 24.4 63.7 31.4 35.7 54.8 53.6
Rec-R1-3B-ESCI+BM25 (Original) 32.2 65.3 60.1 69.1 54.4 46.3

Rec-R1-3B-C4+BM25 (Repro) – 65 58 64 – –
Rec-R1-3B-ESCI+BM25 (Repro) – 65.4 61.4 67.3 55.2 51.2
Rec-R1-3B+BLAIR-BASE (Repro) – – 60 66 – –

5 Discussion

Overall, we were largely able to replicate the results presented in the original paper with some shortcomings.

• Claim 1: We achieved similar results to the authors on NDCG@k and Recall@k and confirm that Rec-
R1 achieves comparable or superior performance to prompting and SFT. However, we did not achieve the
low computational cost for the framework from the authors and were often limited by our computational
resources.

• Claim 2: We confirmed that the Rec-R1 framework leads to maintained or improved general-purpose capa-
bilities after post-training.

5.1 What was Easy

The replication of the study was made easier by the fact that all of the material required to reproduce the study was
publicly available. The code required for all parts of the replication is available at a public GitHub repository [1].
The structure of the repository and the code was far from ideal, but the fact that it was available made it possible for
us to mainly rely on their code rather than writing our own. The scripts written by the original authors enabled us to
use their scripts for data processing, model training and evaluations on all tasks in this paper. For a large number of
them, slight tweaks were necessary to handle inconsistencies, but otherwise we did not need to rewrite the underlying
training and retrieval functions. The datasets were also available through online resources, which meant there was
no need for the otherwise potentially expensive replication process of regenerating the query files. Details for model
training was included in the extensive appendix, which helped us verify the scripts for training and evaluation.

5.2 What was Difficult

Replication of the Rec-R1 paper presented numerous challenges — so much so that we were not able to replicate the
paper to its full extent.
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First, the poor documentation and structure of the code base inside the repository significantly impeded our ability
to replicate the paper. With the exception of the Amazon-C4 product search task, the repository did not document
any explicit instruction for replicating the paper’s tasks. Even for the Amazon-C4 product search task, the authors’
instruction on README.md did not include information on what to do after training. Additionally, the packages sug-
gested in the authors’ code often had an outdated or incompatible version for our code, especially for Python and
JDK.

Also, the repository did not delete outdated scripts and did not provide any information on which scripts should be
used for replication. For instance, for performing data preprocessing for the Amazon Beauty sequential search, the
repository had two almost identical files in src/dataset/amazon_review/inst/sparse that performed the same
task. We only found through looking at the codes and testing out the scripts that only one of them was usable for this
task and the other one was too outdated. The author marked the outdated file’s name with an underscore suffix at the
end, but did not indicate anywhere else on the repository that this file was outdated. The author even unnecessarily
complicated the repository’s structure by embedding the entire Amazon Reviews 2023 repository [13] within the
Rec-R1 repository rather than providing a script for users to download this repository on their own — making the
Rec-R1 repository unnecessarily difficult to navigate around. Such poor documentation and poor repository structure
led to much of the project time being spent on debugging and figuring out the file structure, significantly hindering
our progress in replicating the paper.

Additionally, it was often difficult to obtain the needed GPU and CPU power for replicating this paper. The com-
putational demands of Rec-R1 made replication infeasible on personal devices, so we relied on UW’s Hyak cluster
for access to powerful GPUs. However, even for the most powerful tasks, we found that UW Hyak only had a maxi-
mum of 8 L40’s and 8 L40S’s available at any time in the free stf partition for the entire University of Washington
student body, while other GPUs in Hyak were either unavailable to us or too weak to use for replication. While the
TAs have recommended utilizing 4 L40’s or 4 L40S’s to replicate the paper, it was practically impossible to get that
many GPUs in a Hyak session due to a consistent lack of L40’s and L40S’s available for the entire student body in
the Hyak clusters, and we had to perform training with only 2 L40’s or 2 L40S’s at best. This lack of GPU compute
made it difficult to perform long training tasks in the paper, and we had to cut down the number of training epochs
and steps to get practical replication results. Additionally, UW Hyak’s GPU clusters utilized Apptainer instead of
Docker for containerization, and we had to optimize the existing code to not only work with the lower graphical
power but also with the use of Apptainer in place of Docker — further hindering our progress in replicating the
paper.

5.3 Recommendations for Future Work

For future work, training using the same hardware resources would be a priority. We did not see the performance in
terms of speed that the authors reported for Rec-R1, and to what degree that was caused by the lack of VRAM in the
GPUs used for our reproduction is still unknown. To successfully reproduce the efficiency component of Rec-R1,
training on A100 GPUs would be critical.

Further testing should also require training for longer to match the authors’ numbers of epochs. Our reported scores
were generally worse than their results, which was likely caused by fewer number of epochs and training steps.

However, the main issue with the attempts to reproduce this study is that Rec-R1 might simply not be mature for a
replication at this stage. The study is in preprint and it appears as if the authors of the paper are performing further
experiments. The code is still seeing occasional updates, which is likely contributing to the lack of organization in
the repository. Further studies working on it should wait until the paper itself is finished and the repository is left
static by which the documentation will also hopefully be improved. A significant cleanup of the code base would go
a long way in streamlining future replications.

The results we see still show that Rec-R1 does present a promising direction for future research; and, when the study
is entirely finished, a full replication should be conducted to verify the complete results. In a larger scope, we believe
that our study confirms that reinforcement learning with GRPO is a promising method for fine-tuning models on
specialized tasks while maintaining good generalized performance.
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