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Introduction

Missing data is a growing concern in survey research. A 2018 study found that, on average, 38% of data were
missing across 119 surveys from countries including the U.S., U.K., and Japan, often due to nonresponse
such as skipped sensitive questions or survey dropouts (Dodeen, 2018). This trend has worsened over time,
with response rates in epidemiological studies falling from over 90% in the 1950s to under 70% in the 2010s
(Morton et al., 2012, pp. 106–107). While online surveys offer convenience and broader reach, they have not
reversed this decline, partly due to the resulting oversaturation of surveys and the resulting survey fatigue
(Shiyab et al., 2023, pp. 441–442). Even major U.S. government surveys like CPS and NHANES have
experienced long-term response rate declines (Czajka & Beyler, 2017, pp. 15–19).

Low response rates don’t necessarily invalidate a study, and strategies like incentives or varied survey
modes can increase a survey’s response rate (Czajka & Beyler, 2017; Shiyab et al., 2023). However, nonre-
sponse often introduces bias, and many statistical models – such as linear regression -— require complete-case
datasets (Kuhn & Johnson, 2023, Missing Data section). Simply improving response rates may not eliminate
missing data entirely.

To address this, imputation methods are used to estimate missing values based on observed data (Lumley,
2010, pp. 185–186). These include mean, random, and regression imputation (Lohr, 1999, pp. 272–278).
Their effectiveness can vary depending on the nature of missingness, typically categorized according to Mack
et al. (2018) as:

• MCAR — Missingness unrelated to any data.

• MAR — Missingness related only to observed data.

• MNAR — Missingness related to unobserved data.

Unlike MCAR and MAR, MNAR leads to nonignorable bias and is more difficult to handle statistically
(Lohr, 1999, pp. 264–265).

This context leads to my central research question:

Question: How does the performance of different imputation methods vary under
MCAR, MAR, and MNAR conditions?

To explore this, I conducted a simulation study with the following goal:

Goal: Simulate missing data in a given dataset and evaluate the performance of
different imputation methods.

Methods

Dataset

For this simulaton dataset, I used the American Community Survey (ACS) data. Being more specific, I used
the 1-year ACS Public Use Microdata Sample (PUMS) for New York state in 2023 (United States Census
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Bureau, 2024). I used the ACS PUMS data, because ACS PUMS data provides comprehensive individual-
level microdata for custom tabulation and estimation for free – making the data perfect for use in simulation
studies like mine (United States Census Bureau, n.d.-b). While the United States Census offers both 1-year
and 5-year ACS PUMS data based on the desired window of data collection, I used the 1-year ACS PUMS
dataset to better account for the annual nature of ACS surveys (United States Census Bureau, n.d.-b, 2025).

Now, the 1-year ACS PUMS datasets from 2023 were quite huge with the entire U.S. PUMS dataset
being 570 megabytes in file size in .csv format after compression. Thankfully, ACS provides PUMS data
state by state. I aimed to choose a state with which I had background knowledge in and that offered the
largest possible PUMS dataset without being too demanding on my computer’s processing capacity for data
analysis. I eventually settled on using New York state’s data, as I had background knowledge in New York
state from having lived there in the past and as the New York state had the fourth largest ACS PUMS
dataset by state – much larger in file size than most other states but much less in file size than datasets from
more populated states like California and Texas (United States Census Bureau, 2024).

Variables

For the simulation study, I decided to focus on the following variables: VALP (property value) and RNTP

(contract rent) (United States Census Bureau, n.d.-a, 2024).
I focused on these variables because the PUMS dataset for New York State used households as the unit of

observation. Additionally, New York has long faced a housing shortage, leading to rising rents and increased
homelessness throughout the 2010s and 2020s—especially in New York City (Horowitz & Staveski, 2023).
Having personally experienced the difficulty of securing adequate housing in New York, I was particularly
interested in how missing data might affect key housing variables. Therefore, I conducted a simulation study
to examine how different imputation methods influence the estimation of property values and contract rents
in New York state under different missingness conditions.

Steps

For each of the target variables (VALP and RNTP), I took the following steps for the simulation study:

1. I obtained a subset of the ACS NYS PUMS data with non-missing values for the target variable.

2. I then simulated MCAR, MAR, and MNAR for only the target variable (as discussed in a later section).

3. From here, I imputed the missing data only for the target variable using various imputation methods
(as discussed in a later section).

4. Then, I calculated the means and quartiles of the target variable with corresponding standard errors
using the survey package and the replication weights in the dataset in R (Lumley, 2024).

I should note that, outside of replication weight columns, the dataset had missing values in all columns
except RT (record type), SERIALNO (housing unit/GQ person serial number), DIVISION (division code), PUMA
(Public Use Microdata area code), REGION (region), STATE (state), ADJHSG (adjustment factor for housing
dollar amounts), ADJINC (adjustment factor for income and earnings), NP (number of people in household),
TYPEHUGQ (type of unit), and FFSP (yearly food stamp/SNAP recipiency allocation flag).

However, for each target variable, I avoided imputing other variables to simplify the imputation process
and better isolate the effects of each method on that specific variable.

Simulation of Missing Data

As Dodeen (2018) found more than a third of data missing in prevalent surveys acorss the world, I followed
on the research and aimed for an expected missing rate of 35% each target variable. I also followed the
missingness simulation guidelines of Zhang (2021) to simulate MCAR, MAR, and MNAR conditions as
usually done in statistical literature:
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Missing Completely at Random (MCAR) Each value in the target variable had a 35% chance of
being missing, independent of other values in the target variable and independent of other variables. That
is, whether a value in the target variable was simulated to be missing follows a Bernoulli distribution with
p = 0.35.

The code used can be found in the Appendix.

Missing at Random (MAR) Here, the probability of the target variable missing was set based on
RESMODE, the mode of response (United States Census Bureau, n.d.-a). Past meta-analyses showed that
online responses had a 12% lower response rate than non-online responses Shiyab et al. (2023). So, I
simulated MAR condition by adjusting the probability of missing to reflect this reality while maintaining
an overall expected missing rate of 35%. I should note that, while RESMODE had some missing values in the
original dataset, it did not have any missing values in the VALP and RNTP subsets of the data, making MAR
simulation based on RESMODE possible.

More information on the code and formulas used can be found in the Appendix.

Missing Not at Random (MNAR) In this case, the probability of the target variable was set based
on the target variable itself. Peterson et al. (2021, p. 16) found based on the 2020 Household Pulse Survey
that the average response rate was higher for higher quartiles of median household income and median house
value. Based on this observation, I used the data from Peterson et al. (2021, p. 16) to simulate the trend
of higher response rate or (equivalently) lower nonresponse rate for higher values of target variables VALP

(property value) and RNTP (rent price) for their corresponding subsets of ACS data. This simulation was
also done as to lead to an overall expected missing/nonresponse rate of 0.35.

Since Peterson et al. (2021, p. 16) lists out the nonresponse rates by quartile, I used the multiple
cutoff method to set up the MNAR simulation in which the probability of a response in the target variable
becoming missing was conditioned on which quartile the response was based in; it should be noted that
such cutoff method is more realistic than the single cutoff method but is less realistic than the percentile or
regression-based methods of simulating MNAR (Zhang, 2021, p. 122).

More information on the code and formulas used can be found in the Appendix.

Imputation Methods

The simulation study assesses the following imputation methods:

• Random imputation: Each missing value in the target variable is imputed with a randomly selected
non-missing value from the same variable (Lohr, 1999, p. 275). All non-missing values in the target
variable are equally likely to be selected for imputing each missing value.

• Nearest neighbor (NN) imputation: Each missing value in the target variable was imputed using
the target variable values from the “nearest” neighbors of the corresponding row (Lohr, 1999, p. 275).

– Beretta and Santaniello (2016) found that using three neighbors, selected with a relief-based
feature selection method, yielded the best performance for nearest neighbor imputation in terms
of balancing imputation accuracy and preservation of data structure. Based on this finding, I
used three nearest neighbors with relief-based feature selection for the imputation procedure.

– Since there may be missing values in the selected predictor features, I used a modified version
of the Euclidean distance function that upscales non-missing values from other predictors in the
presence of missing values in some predictors, as seen in scikit-learn developers (2025).

– NN imputation is based on the k -nearest neighbors algorithm, which suffers from the curse of
dimensionality for high-dimensional data for as few as 10-15 dimensions (Beyer et al., 1999). So,
I limited the number of features to 10 for the NN imputation method.

• Mean Imputation: Each missing value in the target variable is imputed with the mean of the non-
missing values from the same variable (Lohr, 1999, p. 275).
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Figure 1: Bar Charts Comparing Mean and Median Estimations Between Imputation Methods
(Horizontal axes show imputation methods; vertical axes show values of the target variables.)
(Note that the bar charts do not include 25th and 75th quantile estimations.)

• Regression Imputation: Each missing value in the target variable is imputed using a multivariate
regression model of the target variable on all other covariates that have no missing data and are
not identifier, weight, adjustment, flag, regional, or Puerto Rico-specific columns (Lohr, 1999; United
States Census Bureau, n.d.-a).

The simulation study also has two control group methods:

• No missing: This refers to the VALP/RNTP subset of the ACS dataset before simulating missingness.

• No imputation: This refers to the VALP/RNTP subset of the ACS dataset after simulating missingness
and before implementing any imputation method.

– Means and quartiles for target variables VALP/RNTP were calculated here by removing rows with
missing VALP/RNTP values.

Results

First, looking at the control group methods and using the “no missing” values as the baseline, I found that
not doing any imputation led to either the most accurate or the second most accurate mean and quartile
estimates among all methods for both VALP and RNTP under MCAR and MAR conditions. However, under
MNAR condition, not doing any imputation led to a gross overestimation of the means and quartiles for
both VALP and RNTP – performing the second worst for mean estimation and the worst for estimating the
75th quantiles among the six methods. All other imputation methods except the NN method also led to
overestimation of the mean, the 25th quantile, and the median for both target variables.
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Second, as seen in Figure 1, the NN imputation method performs the worst overall in accuracy and
compute time. While other imputation methods took less than a minute to run on my computer with
6-core 10th generation Intel Core i7, the NN imputation method took around one hour to run for each
target variable with parallelization. The NN imputation method also generally severely or moderately
underestimates the mean and quartiles for both VALP and RNTP for all randomness conditions. The NN
imputation especially underestimates the 25th quantile for both variables under all randomness conditions,
estimating this particular quartile to be less than 1 despite the baseline 25th quantile being 200,000 for VALP
and 880 for RNTP.

Third, also as seen in Figure 1, random imputation performed better than all other imputation methods
in accuracy for quartile estimates of both target variables. Random imputation’s performance especially
becomes notable under MNAR condition. While random imputation does lead to a more biased result for
quartile estimations than no imputation under MCAR and MAR conditions, random imputation outperforms
no imputation for quartile estimations under MNAR condition, even pushing back against the nonresponse
bias and overestimating the quartiles less than when there is no imputation. However, random imputation
does estimate the mean for either target variable less accurately than mean imputation or regression impu-
tation under all missingness conditions, being off from the “no missing” baseline by about 3% under MCAR,
about 5% under MAR, and about 11% under MNAR.

Fourth, mean and regression imputation consistently distort quartile estimates for both variables. Mean
imputation overestimates the 25th quantile and the median while underestimating the 75th quantile for
both target variables under all three missingness conditions. The distortion might be caused by the right-
skewedness of the target variables, as seen in the extra histogram outputs in the Appendix. Regression
imputation almost always overestimates the quartiles, including the median, for both target variables under
all three missingness conditions.

Last but not least, there are a few interesting trends found with the standard errors. Outside of the
baseline “no missing” method, having no imputation leads to the highest or the second highest standard
error for all estimates for both variables under all missing conditions. The standard error for NN imputation
is noticeably low for the 25th quantile and the median estimates for both target variables under all missing
conditions, even having standard errors of close to 0 for the 25th quantile estimates. Compared to the
NN imputation, other imputation methods generally lead to relatively high standard errors for median
estimation. Random imputation especially had the highest standard error for median estimation for both
target variables in all missingness conditions with mean imputation often having the next highest standard
error. Additionally, except when estimating the 25th quantile for RNTP, regression imputation consistently
decreases standard error from the baseline “no missing” method, though not as much as the NN imputation.

The detailed numerical results – especially on the 25th and 75th quantiles – can be found in the Appendix.

Discussion/Conclusion

Overall, the results first indicate that no imputation can lead to surprisingly accurate estimates under
MCAR and MAR but highly biased estimates under MNAR; having no imputation also generally leads to
larger standard errors for estimates than performing any imputation method. For the dataset here, the
NN imputation always underestimates the means and quartiles with low standard errors while taking an
unusually long period of time to run, making it the worst method for imputation. Random imputation
performs the best for quartile estimation, especially under MNAR, though it performs less well than other
imputation methods for mean estimation and suffers from high standard errors for median estimation. Mean
and regression imputations tend to perform better for mean estimation, and regression imputation especially
tends to make estimates with relatively low standard errors. However, mean and regression imputations also
do not perform as well on quartile estimates.

There is potential room for improvement here. A future study could potentially look at how different
missingness rates affect the quartile estimates and how the imputation methods perform on differently
distributed data. A future study could also explore the efficacy of multiple imputation, which is usually the
principled standard for missing data imputation (Lumley, 2010, pp. 185-186). While this study attempts to
assess the performance of different imputation methods, future studies should continue on this attempt to
better assess imputation methods over a more diverse range of conditions.
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Appendix

R Code and Formulas

Here is the R code used to perform the simulation study. The R code below are meant to be run in order
from top to bottom.

Introduction

The code starts with importing the needed libraries and dataset.

# Import all necessary external libraries

library(survey)

library(dplyr) # For data manipulation

library(tidyr)

library(MASS)

library(RANN)

library(pbapply)

library(progressr)

library(car)

library(caret)

library(mice)

library(parallel)

library(doParallel)

library(foreach)

library(stringr)

library(ggplot2)

library(patchwork)

# Import the ACS NYS data

## Note: Run this code after checking the working directory;

## this code might take a while to run!

csv_pny <- read.csv("psam_h36.csv")

Imputation Functions – No Imputation, Mean Imputation, Random Imputation

The next set of code defines the imputation functions. The first two input parameters of all imputation
functions are data (the dataset in the form of an R data.frame object) and var name (the target variable).
All imputation functions output a newer version of data with missing data all imputed for the target variable.

# data: the dataset

# var_name: name of the target variable

# No imputation

no_imputation <- function(data, var_name) {
# No changes to the data, just return it

return(data)

}

# Mean imputation

mean_imputation <- function(data, var_name) {
data[[var_name]][is.na(data[[var_name]])] <-

mean(data[[var_name]], na.rm = TRUE)

return(data)
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}

# Random imputation

random_imputation <- function(data, var_name) {
v <- data[[var_name]]

if (any(na <- is.na(v))) {
o <- v[!na]

if (length(o) == 0) stop("Cannot impute: all values are NA")

v[na] <- sample(o, sum(na), replace = TRUE)

data[[var_name]] <- v

}
return(data)

}

Imputation Function – Nearest Neighbor Imputation

The following function defines the nearest neighbor imputation with relief-based feature selection based on
Robnik-Šikonja and Kononenko (2003). Here, max num of features is the maximum number of features to
select for the nearest neighbor imputation, K relief is the hyperparameter for relief-based feature selection,
and k impute is the number of neighbors to look at for the imputation process. I should note that, while
K relief is recommended to be set to 10 according to (Urbanowicz et al., 2018), I reduced it to 5 to reduce
the computational intensity of the relief-based feature selection process.

k_NN_relief_imputation_parallel <- function(data, var_name,

max_num_of_features = 10,

K_relief = 5, k_impute = 3) {
## 0) Set up parallel processing

ncores <- parallel::detectCores(logical = FALSE) - 1

if (ncores < 1) ncores <- 1

cl <- makeCluster(ncores)

registerDoParallel(cl)

on.exit({
stopCluster(cl)

registerDoSEQ()

}, add = TRUE)

print(sprintf("→ Using %d cores for parallel processing.", ncores))

# 1) Define function for calculating Euclidean distance

# with missing data in the predictors

partial_euclidean <- function(x, Y, total_p) {
m <- nrow(Y)

dists <- numeric(m)

for (j in seq_len(m)) {
xj <- x; yj <- Y[j, ]

shared <- which(!is.na(xj) & !is.na(yj))

if (length(shared) == 0) {
dists[j] <- Inf

} else {
dist_sq <- sum((xj[shared] - yj[shared])^2)

dists[j] <- sqrt((total_p / length(shared)) * dist_sq)

}
}
return(dists)
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}
print("1/8) Partial Euclidean distance function defined.")

## 2) Identify continuous numeric predictors

# Finding columns to exclude first:

# Identifier columns

id_cols <- c("SERIALNO", "RT")

# Replication weight columns

weight_cols <- grep("^WGTP", names(data), value = TRUE)

# Adjustment columns

adj_cols <- c("ADJHSG", "ADJINC")

# Flag columns

flag_cols <- grep("^F", names(data), value = TRUE)

# Geographical columns + Puerto Rico-centric columns + the target variable/column

manual_exclude <- c("STATE", "DIVISION", "REGION", "HOTWAT", "PLMPRP", var_name)

# Columns with unusually high amounts of missing data (>90%)

high_missing <- names(which(colMeans(is.na(data)) > 0.90))

excluded_cols <- unique(

c(id_cols, weight_cols, adj_cols, flag_cols,

high_missing, manual_exclude)

)

# Finding all numeric columns that are not identified for exclusion

all_num_vars <- names(data)[sapply(data, is.numeric)]

numeric_vars <- setdiff(all_num_vars, excluded_cols)

# Identifying numeric columns that may be categorical in practice

# by finding numeric columns whose non-missing values are all integers

# and have fewer than 15 distinct non-NA values

is_cat_in_prac <- function(x) {
is.numeric(x) &&

all(na.omit(x) %% 1 == 0) &&

(dplyr::n_distinct(na.omit(x)) < 15)

}
cat_vars <- names(

Filter(is_cat_in_prac, data[, numeric_vars, drop = FALSE])

)

# Excluding numeric columns that may be categorical in practice

continuous_vars<- setdiff(numeric_vars, cat_vars)

# Stop the function if no continuous predictor is left

if (length(continuous_vars) == 0) {
stop("No continuous predictors found after filtering.")

}
print("2/8) Continuous predictors identified.")

## 3) Subset and normalize the remaining predictors

subset_df <- data[, c(var_name, continuous_vars), drop = FALSE]

all_cols <- c(var_name, continuous_vars)

mins <- sapply(subset_df[all_cols], function(col) min(col, na.rm = TRUE))

maxs <- sapply(subset_df[all_cols], function(col) max(col, na.rm = TRUE))
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denom <- pmax(maxs - mins, 1e-8)

norm_df <- as.data.frame(

Map(function(col, mn, d) {(col - mn) / d},
subset_df[all_cols], mins, denom),

stringsAsFactors = FALSE

)

Xall <- as.matrix(norm_df[, continuous_vars, drop = FALSE])

Yall <- norm_df[[var_name]] # may contain NAs

N <- nrow(Xall)

p <- ncol(Xall)

print("3/8) Data subsetted and normalized.")

## 4) Nearest-neighbor search for relief-based feature selection

print("4/8) Computing nearest neighbors in parallel...")

Xall_mat <- Xall

fast_partial_euclidean <- function(x_row, Y_mat, n_total) {
# vectorized version

shared_mask <- !is.na(x_row) & !is.na(Y_mat)

sq_diffs <- (matrix(rep(x_row, each = nrow(Y_mat)), nrow = nrow(Y_mat),

byrow = FALSE) - Y_mat)^2

sq_diffs[!shared_mask] <- NA

num_shared <- rowSums(!is.na(sq_diffs))

dist_sq <- rowSums(sq_diffs, na.rm = TRUE)

adjusted <- sqrt((n_total / num_shared) * dist_sq)

adjusted[num_shared == 0] <- Inf

return(adjusted)

}

# Use pbapply with a cluster argument to show a progress bar + parallel compute

pboptions(type = "timer") # or "txt" / "tk" as you prefer

nn_list <- pblapply(

seq_len(N),

function(i) {
dists <- fast_partial_euclidean(Xall_mat[i, ], Xall_mat, p)

dists[i] <- Inf

order(dists, na.last = TRUE)[seq_len(K_relief)]

},
cl = cl

)

nn_idx_matrix <- do.call(rbind, nn_list)

print("4/8) Nearest neighbors computed.")

## 5) Compute |Y_i - Y_neighbor| for relief calculations

Y_neighbors <- matrix(NA_real_, nrow = N, ncol = K_relief)

for (i in seq_len(N)) {
neigh <- nn_idx_matrix[i, ]

Y_neighbors[i, ] <- abs(Yall[i] - Yall[neigh])

}
print("5/8) |Y_i - Y_neighbor| precomputed.")
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## 6) Compute ReliefF scores and select features with lowest scores

print("6/8) Computing ReliefF scores in parallel...")

handlers("progress")

clusterExport(

cl,

varlist = c("Xall_mat", "nn_idx_matrix", "Y_neighbors", "N", "K_relief"),

envir = environment()

)

relief_vec <- foreach(

jfeat = seq_len(p),

.combine = "c",

.packages = c("progressr")

) %dopar% {
total_sum <- 0

for (i in seq_len(N)) {
neigh <- nn_idx_matrix[i, ]

dX_vec <- abs(Xall_mat[i, jfeat] - Xall_mat[neigh, jfeat])

dY_vec <- Y_neighbors[i, ]

valid <- which(!is.na(dX_vec) & !is.na(dY_vec))

if (length(valid) > 0) {
total_sum <- total_sum + sum(dX_vec[valid] * dY_vec[valid])

}
}
prog <- progressor(along = seq_len(p))

prog(message = sprintf("Feature %d/%d done", jfeat, p))

total_sum / (N * K_relief)

}

relief_scores <- setNames(relief_vec, continuous_vars)

print("6/8) ReliefF done.")

ranked_feats <- names(sort(relief_scores, decreasing = FALSE))

selected_features <- head(ranked_feats, max_num_of_features)

print(paste0(" Selected features: ", paste(selected_features, collapse = ", ")))

## 7) Nearest neighbor imputation

print("7/8) Imputing missing target values in parallel...")

rows_missing <- which(is.na(Yall))

rows_obs <- setdiff(seq_len(N), rows_missing)

# Now that selected_features is defined, build selected_indices:

selected_indices <- match(selected_features, continuous_vars)

X_obs <- Xall_mat[rows_obs, selected_indices, drop = FALSE]

Y_obs <- Yall[rows_obs]

X_mis <- Xall_mat[rows_missing, selected_indices, drop = FALSE]

total_p_sel <- length(selected_features)

clusterExport(

cl,

varlist = c("X_obs", "Y_obs", "X_mis",

11



"k_impute", "partial_euclidean", "total_p_sel"),

envir = environment()

)

imputed_vals_list <- pblapply(

seq_len(nrow(X_mis)),

function(idx) {
d_m <- partial_euclidean(

X_mis[idx, , drop = FALSE][1, ],

X_obs,

total_p_sel

)

ord <- order(d_m, na.last = TRUE)

nn_idx <- ord[seq_len(k_impute)]

mean(Y_obs[nn_idx], na.rm = TRUE)

},
cl = cl

)

imputed_vals <- unlist(imputed_vals_list)

data[[var_name]][rows_missing] <- imputed_vals

print("7/8) Imputation complete.")

## 8) Return imputed dataset

print("8/8) Returning imputed dataset.")

return(data)

}

Imputation Function – Regression Imputation

The following function defines the regression imputation.

regression_imputation <- function(data, var_name){
## Find columns to not use for the regression model

# Identifier columns

id_cols <- c("SERIALNO", "RT")

# Replication weight columns

weight_cols <- grep("^WGTP", names(data), value = TRUE)

# Adjustment columns

adj_cols <- c("ADJHSG", "ADJINC")

# Flag columns

flag_cols <- grep("^F", names(data), value = TRUE)

# Geographical columns + Puerto Rico-centric columns

manual_exclude <- c("STATE", "DIVISION", "REGION", "HOTWAT", "PLMPRP")

# Columns with unusually high amounts of missing data (>90%)

high_missing <- names(which(colMeans(is.na(data)) > 0.90))

excluded_cols <- unique(

c(id_cols, weight_cols, adj_cols, flag_cols,

high_missing, manual_exclude)

)

# Keep WGTP columns for later use with survey package
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data_from_weight_cols <- data[weight_cols]

# Exclude the excluded columns

included_cols <- setdiff(names(data), excluded_cols)

data <- data[included_cols]

# Find complete-case columns other than var_name

# for rows with non-missing values in var_name

# & only use those columns + var_name

complete_case_cols <- names(data)[

sapply(data, function(col) all(!is.na(col)))

]

complete_case_cols <- setdiff(complete_case_cols, var_name)

complete_case_cols <- complete_case_cols[!is.na(complete_case_cols)]

data <- data[c(complete_case_cols, var_name)]

# If there are no complete-case columns, throw an error

if (length(complete_case_cols) == 0) {
stop("No complete-case columns available for regression imputation.")

}

# Prep for one-hot encoding on categorical variables

# by converting factor col -> char

data <- data %>%

mutate(across(where(is.factor), as.character))

# Removing columns with only one unique value

data <- data[ , sapply(data, function(col) length(unique(col)) > 1)]

# Looking only at numeric columns

data_numeric_cols <- data[, sapply(data, is.numeric)]

# Removing var_name

data_numeric_cols <- data_numeric_cols[, !names(data_numeric_cols) %in% var_name]

# Removing aliased numeric columns

if (length(data_numeric_cols) > 0){
alias_cols <- findLinearCombos(data_numeric_cols)

if (length(alias_cols$remove) > 0) {
data <- data[, !names(data) %in% alias_cols$remove]

warning(paste("Dropped columns with linear combinations:",

paste(alias_cols$remove, collapse = ", ")))

}
}

# Check for strong multicollinearity

# and drop columns automatically

vif_values <- vif(lm(as.formula(paste(var_name, "~ .")), data = data))

vif_threshold <- 10

if (any(vif_values > vif_threshold)) {
high_vif_cols <- names(vif_values[vif_values > vif_threshold])

data <- data[, !names(data) %in% high_vif_cols]

if (length(high_vif_cols) != 0) {
warning(paste("Dropped columns with VIF > ", vif_threshold, ":",

paste(high_vif_cols, collapse = ", ")))
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}
}

# If there are no predictors left, throw an error

if (ncol(data) == 1) {
stop("No predictors left after filtering. Cannot perform regression imputation.")

}
# Fit a linear model

lm_model <- lm(as.formula(paste(var_name, "~ .")), data = data)

# Predict missing values

missing_indices <- is.na(data[[var_name]])

data[[var_name]][missing_indices] <- predict(lm_model,

newdata = data[missing_indices, ])

# Add back in weight columns

data <- cbind(data, data_from_weight_cols)

return(data)

}

Helper Functions for Imputation

Here is the R code defining functions get mean quantiles() and get histogram() for obtaining the
weighted mean, quantiles, and histogram of the target variable from the given data using the survey package.

# Defining a function for outputting mean and quantiles

# based on survey design and variable name & na_rm status (Default: FALSE)

# (If na_rm is true, the function will remove any missing data in the

# target variable while doing the calculations. Otherwise, the function

# will throw an error in the presence of any such missing data.)

get_mean_quantiles <- function(design, var_name, na_rm = FALSE) {
mean_estimate <- svymean(as.formula(paste0("~", var_name)),

design = design, na.rm = na_rm)

quantiles_estimate <- svyquantile(as.formula(paste0("~", var_name)),

design = design,

quantiles = c(0.25, 0.5, 0.75),

na.rm = na_rm)

return(list(mean = mean_estimate, quantiles = quantiles_estimate))

}

# Defining a function for getting histogram

# based on survey design and variable name

get_histogram <- function(design, var_name) {
svyhist(as.formula(paste0("~", var_name)),

design = design, breaks = 20,

main = paste("Histogram of", var_name),

xlab = var_name)

}

The two functions defined above are used to create another massive helper function to streamline the
simulation process. This function runs the given imputation function (imputation function) for the target
variable (var name) in a given dataset (data). Afterwards, the function prints the summary statistics for

14



the target variable from the imputed dataset and plots a histogram of the target variable. The summary
statistics and histogram are also saved as .csv and .png files, respectively. At the end, the function ends
by invisibly returning the summary statistics.

The na rm parameter determines whether to remove any missing data in the target variable while calcu-
lating the weighted means and quantiles. If na rm is set to FALSE, the function will throw an error when the
imputed data still has missing data in the target variable.

impute_calculate_and_visualize_PUMS <- function(data, var_name,

imputation_function,

na_rm = FALSE) {
# 1) Run the imputation, get the new data frame

imputed_data <- imputation_function(data, var_name)

# 1.1) Save imputed data as csv file for backup

write.csv(imputed_data,

file = paste0("imputed_", var_name, "_",

deparse(substitute(imputation_function)), ".csv"),

row.names = FALSE)

# 2) Build the survey design on the imputed data

acs_design <- svrepdesign(

data = imputed_data,

weights = ~WGTP,

repweights = imputed_data[, grep("^WGTP[0-9]+$", names(imputed_data))]

)

# 3) Compute mean & quantiles for the target variable

mean_quantiles <- get_mean_quantiles(

design = acs_design,

var_name = var_name,

na_rm = na_rm

)

# 3.1) Write summary statistics to a CSV

# { mean:

mean_val <- coef(mean_quantiles$mean)[[var_name]]

se_mean <- SE(mean_quantiles$mean)

# { quantiles (25th, 50th, 75th) and their SEs:

q_obj <- mean_quantiles$quantiles

q_vals <- as.numeric(q_obj[[var_name]]) # numeric vector length=3

se_q_vec <- as.numeric(SE(q_obj)) # same length=3

# Assign to named variables:

q25 <- q_vals[1]; se_q25 <- se_q_vec[1]

q50 <- q_vals[2]; se_q50 <- se_q_vec[2]

q75 <- q_vals[3]; se_q75 <- se_q_vec[3]

# ----- 5) Build a data frame of summary stats (including SEs) -----

stats_df <- data.frame(

variable = var_name,

mean = mean_val,

se_mean = se_mean,

q25 = q25,
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se_q25 = se_q25,

q50 = q50,

se_q50 = se_q50,

q75 = q75,

se_q75 = se_q75,

row.names = NULL

)

stats_csv_name <- paste0("stats_", var_name, "_",

deparse(substitute(imputation_function)), ".csv")

write.csv(stats_df, file = stats_csv_name, row.names = FALSE)

cat("→ Summary statistics (with SEs) written to:", stats_csv_name, "\n")

# 3.2) Print the summary statistics to console

cat("\n### Survey-weighted estimates for", var_name, "###\n")
cat("Mean =", signif(mean_val, 6), "(SE =", signif(se_mean, 6), ")\n")
cat("25th pct =", signif(q25, 6), "(SE =", signif(se_q25, 6), ")\n")
cat("50th pct =", signif(q50, 6), "(SE =", signif(se_q50, 6), ")\n")
cat("75th pct =", signif(q75, 6), "(SE =", signif(se_q75, 6), ")\n\n")

# 6) Plot the histogram & save it as png file

hist_png_name <- paste0("histogram_", var_name, "_",

deparse(substitute(imputation_function)), ".png")

png(filename = hist_png_name,

width = 800,

height = 600,

res = 100)

get_histogram(acs_design, var_name)

dev.off()

cat("→ Histogram saved to:", hist_png_name, "\n")

# 7) Return the statistics invisibly

invisible(mean_quantiles)

}

Getting Complete Case Subsets for Each Target Variable

Here is the R code for filtering the dataset for rows without missing values in VALP and RNTP, respectively,
and create a complete case dataset for each variable.

# Filtering for rows without missing values

csv_pny_VALP_not_missing <-

csv_pny %>%

filter(!is.na(VALP))

csv_pny_RNTP_not_missing <-

csv_pny %>%

filter(!is.na(RNTP))

Missing Completely at Random (MCAR)

Here is the R code for simulating MCAR on each dataset by having each cell in the target variable become
missing with a chance of 35%.
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# Simulating MCAR condition on each of these filtered datasets

# -- simulating 35% missingness

missing_prop <- 0.35

## VALP

csv_pny_VALP_mcar <- csv_pny_VALP_not_missing

csv_pny_VALP_mcar$VALP <- ifelse(

runif(nrow(csv_pny_VALP_not_missing)) < missing_prop,

NA,

csv_pny_VALP_not_missing$VALP

)

## RNTP

csv_pny_RNTP_mcar <- csv_pny_RNTP_not_missing

csv_pny_RNTP_mcar$RNTP <- ifelse(

runif(nrow(csv_pny_RNTP_not_missing)) < missing_prop,

NA,

csv_pny_RNTP_not_missing$RNTP

)

## Just in case, save the MCAR files as csv files

write.csv(csv_pny_VALP_mcar,

file = "csv_pny_VALP_mcar.csv",

row.names = FALSE)

write.csv(csv_pny_RNTP_mcar,

file = "csv_pny_RNTP_mcar.csv",

row.names = FALSE)

From here, the following R code runs the simulations and save the imputed datasets, the statistical
summaries (with means, quartiles, and their standard errors), and the histograms as .csv or .png files.
After the output files were generated, I moved these files to the results MCAR directory for organized
safekeeping. Just in case, I also saved the summary statistics in the R environment.

# No imputation

no_imputation_VALP_mcar <- impute_calculate_and_visualize_PUMS(csv_pny_VALP_mcar,

"VALP", no_imputation,

na_rm = TRUE)

no_imputation_RNTP_mcar <- impute_calculate_and_visualize_PUMS(csv_pny_RNTP_mcar,

"RNTP", no_imputation,

na_rm = TRUE)

# Mean imputation

mean_imputation_VALP_mcar <- impute_calculate_and_visualize_PUMS(csv_pny_VALP_mcar,

"VALP",

mean_imputation)

mean_imputation_RNTP_mcar <- impute_calculate_and_visualize_PUMS(csv_pny_RNTP_mcar,

"RNTP",

mean_imputation)

# Random imputation

random_imputation_VALP_mcar <- impute_calculate_and_visualize_PUMS(csv_pny_VALP_mcar,

"VALP",

random_imputation)

random_imputation_RNTP_mcar <- impute_calculate_and_visualize_PUMS(csv_pny_RNTP_mcar,
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"RNTP",

random_imputation)

# Nearest neighbor imputation

kNN_imputation_VALP_mcar <- impute_calculate_and_visualize_PUMS(csv_pny_VALP_mcar,

"VALP",

k_NN_relief_imputation_parallel)

kNN_imputation_RNTP_mcar <- impute_calculate_and_visualize_PUMS(csv_pny_RNTP_mcar,

"RNTP",

k_NN_relief_imputation_parallel)

# Regression imputation

regression_imputation_VALP_mcar <- impute_calculate_and_visualize_PUMS(csv_pny_VALP_mcar,

"VALP",

regression_imputation)

regression_imputation_RNTP_mcar <- impute_calculate_and_visualize_PUMS(csv_pny_RNTP_mcar,

"RNTP",

regression_imputation)

Missing at Random (MAR)

Formulas First, let’s define some variables. For each target variable, let

• poff be the proportion of offline responses,

• pon = 1− poff be the proportion of online responses,

• ron denote the simulated response rate for an online response,

• roff denote the simulated response rate for an offline response,

• mon be the simulated missingness/nonresponse rate for an online response, and

• moff be the simulated missingness/nonresponse rate for an online response.

I found that Shiyab et al. (2023) did not specify whether the intended relationship in response rate
between online and offline responses was (1) ron = (1 − 0.12)roff, or (2) ron = roff − 0.12. While both
interpretations are plausible, I adopted interpretation (1) for the simulation. This formulation enabled me
to scale the missingness probabilities in a way that achieved an overall expected missing rate of 0.35, even
without knowing the exact values of ron and roff, which were not provided. Interpretation (2), while perhaps
more intuitively suggested by the language in the original source, would not have worked in this context, as
it does not allow the probabilities to scale proportionally without knowing the original values of ron and roff.

For each target variable subset of the ACS NYS data, I calculated roff as follows to allow for an expected
response rate of 0.65 or (equivalently) an expected nonresponse/missingness rate of 0.35:

ronpon + roffpoff = 1− 0.35

0.88roff(1− poff) + roffpoff = 0.65

roff(0.88 + 0.12roff) = 0.65

roff =
0.65

0.88 + 0.12poff

From here, I let ron equal 0.88roff .

Then, I calculated the missingness/nonresponse rates by having mon = 1− ron and moff = 1− roff .
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R Code Here is the R code for calculating the missingness/nonresponse rates and using those rates to
simulate the MAR condition. Note that, in this code, we have:

• poff corresponding to prop VALP not internet for VALP and prop RNTP not internet for RNTP

• pon corresponding to 1 - prop VALP not internet for VALP and 1 - prop RNTP not internet for
RNTP

• ron correspnding to not missing prop internet VALP for VALP and not missing prop internet RNTP

for RNTP

• roff correspnding to not missing prop not internet VALP for VALP and not missing prop not internet RNTP

for RNTP

• mon correspnding to missing prop internet VALP for VALP and missing prop internet RNTP for
RNTP

• moff correspnding to missing prop not internet VALP for VALP and missing prop not internet RNTP

for RNTP

missing_prop <- 0.35

non_missing_prop <- 1 - missing_prop

# Looking at proportions of RESMODE

props_RNTP <- prop.table(table(csv_pny_RNTP_not_missing$RESMODE))

props_VALP <- prop.table(table(csv_pny_VALP_not_missing$RESMODE))

props_RNTP

props_VALP

prop_RNTP_not_internet <- 1 - props_RNTP[[3]]

prop_VALP_not_internet <- 1 - props_VALP[[3]]

c_val <- 0.88 # 12% less response in internet mode

# Setting probability of missingness for each group

not_missing_prop_not_internet_RNTP <- non_missing_prop / (c_val + (1 - c_val) *

prop_RNTP_not_internet)

not_missing_prop_not_internet_VALP <- non_missing_prop / (c_val + (1 - c_val) *

prop_VALP_not_internet)

not_missing_prop_internet_RNTP <- not_missing_prop_not_internet_RNTP * c_val

not_missing_prop_internet_VALP <- not_missing_prop_not_internet_VALP * c_val

missing_prop_not_internet_RNTP <- 1 - not_missing_prop_not_internet_RNTP

missing_prop_not_internet_VALP <- 1 - not_missing_prop_not_internet_VALP

missing_prop_internet_RNTP <- 1 - not_missing_prop_internet_RNTP

missing_prop_internet_VALP <- 1 - not_missing_prop_internet_VALP

# Now draw ONE uniform per row, instead of two separate runif() calls

# 1) RNTP

csv_pny_RNTP_mar <- csv_pny_RNTP_not_missing

# draw one U(0,1) per row:

u_R <- runif(nrow(csv_pny_RNTP_not_missing))

19



csv_pny_RNTP_mar$RNTP <- ifelse(

csv_pny_RNTP_mar$RESMODE == 3,

ifelse(

u_R < missing_prop_internet_RNTP, # use the same u_R vector

NA,

csv_pny_RNTP_not_missing$RNTP

),

ifelse(

u_R < missing_prop_not_internet_RNTP, # and here too

NA,

csv_pny_RNTP_not_missing$RNTP

)

)

# 2) VALP

csv_pny_VALP_mar <- csv_pny_VALP_not_missing

# draw one U(0,1) per row (fresh draw):

u_V <- runif(nrow(csv_pny_VALP_not_missing))

csv_pny_VALP_mar$VALP <- ifelse(

csv_pny_VALP_mar$RESMODE == 3,

ifelse(

u_V < missing_prop_internet_VALP, # use u_V here

NA,

csv_pny_VALP_not_missing$VALP

),

ifelse(

u_V < missing_prop_not_internet_VALP, # and here

NA,

csv_pny_VALP_not_missing$VALP

)

)

## Just in case, save the MAR files as csv files

write.csv(csv_pny_VALP_mar,

file = "csv_pny_VALP_mar.csv",

row.names = FALSE)

write.csv(csv_pny_RNTP_mar,

file = "csv_pny_RNTP_mar.csv",

row.names = FALSE)

From here, the following R code runs the simulations and save the imputed datasets, the statistical
summaries (with means, quartiles, and their standard errors), and the histograms as .csv or .png files. After
the output files were generated, I moved these files to the results MAR directory for organized safekeeping.
Just in case, I also saved the summary statistics in the R environment.

# No imputation

no_imputation_VALP_mar <- impute_calculate_and_visualize_PUMS(csv_pny_VALP_mar,

"VALP", no_imputation,

na_rm = TRUE)

no_imputation_RNTP_mar <- impute_calculate_and_visualize_PUMS(csv_pny_RNTP_mar,

"RNTP", no_imputation,

na_rm = TRUE)
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# Mean imputation

mean_imputation_VALP_mar <- impute_calculate_and_visualize_PUMS(csv_pny_VALP_mar,

"VALP",

mean_imputation)

mean_imputation_RNTP_mar <- impute_calculate_and_visualize_PUMS(csv_pny_RNTP_mar,

"RNTP",

mean_imputation)

# Random imputation

random_imputation_VALP_mar <- impute_calculate_and_visualize_PUMS(csv_pny_VALP_mar,

"VALP",

random_imputation)

random_imputation_RNTP_mar <- impute_calculate_and_visualize_PUMS(csv_pny_RNTP_mar,

"RNTP",

random_imputation)

# Nearest neighbor imputation

kNN_imputation_VALP_mar <- impute_calculate_and_visualize_PUMS(csv_pny_VALP_mar,

"VALP",

k_NN_relief_imputation_parallel)

kNN_imputation_RNTP_mar <- impute_calculate_and_visualize_PUMS(csv_pny_RNTP_mar,

"RNTP",

k_NN_relief_imputation_parallel)

# Regression imputation

regression_imputation_VALP_mar <- impute_calculate_and_visualize_PUMS(csv_pny_VALP_mar,

"VALP",

regression_imputation)

regression_imputation_RNTP_mar <- impute_calculate_and_visualize_PUMS(csv_pny_RNTP_mar,

"RNTP",

regression_imputation)

Missing Not at Random (MNAR)

Formulas Let’s initialize some variables. Let:

• r1 denote the simulated response rate for the 1st quartile of the target variable,

• r2 denote the simulated response rate for the 2nd quartile of the target variable,

• r3 denote the simulated response rate for the 3rd quartile of the target variable,

• r4 denote the simulated response rate for the 4th quantile of the target variable,

• m1 be the simulated missingness/nonresponse rate for the 1st quartile,

• m2 be the simulated missingness/nonresponse rate for the 2nd quartile,

• m3 be the simulated missingness/nonresponse rate for the 3rd quartile, and

• m4 be the simulated missingness/nonresponse rate for the 4th quantile.

From here, I used the average response rates provided by Peterson et al. (2021, p. 16) to simulate MNAR
based on the values of the target variable (VALP, RNTP).
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Domain Average Response Rate
Quartile 1 Quartile 2 Quartile 3 Quartile 4

Median household income 5.0% 6.0% 6.9% 8.4%
Median house value 5.0% 6.1% 7.2% 8.3%

Mean response rate (across both domains) 5.0% 6.05% 7.05% 8.35%

Table 1: Comparison of Median Household Income and House Value (Peterson et al., 2021, p. 16)

As seen in Table 1, I calculated the mean response rate for each quartile from the two domains (median
household income, median house value) and then obtained the value for r1 as to get an expected overall
missing/nonresponse rate of 0.35 from scaling up the mean response rates proportionally:

1

4
(r1 + r2 + r3 + r4) = 1− 0.35

1

4

(
r1 +

6.05

5
r1 +

7.05

5
r1 +

8.35

5
r1

)
= 0.65(

1

4

)(
1 +

6.05

5
+

7.05

5
+

8.35

5

)
r1 = 0.65

r1 =
4× 0.65

1 + 6.05
5 + 7.05

5 + 8.35
5

From here, I calculated the other simulated response rates by having r2 = 6.05
5 r1, r3 = 7.05

5 r1, and
r4 = 8.35

5 r1.
Then, I calculated the simulated missingness/nonresponse rates by having mi = 1 − ri for all i =

{1, 2, 3, 4}.

R Code Here is the R code for calculating the missingness/nonresponse rates and using those rates to
simulate the MNAR condition. Note that, in this code, we have:

• r1 corresponding to non missing rate for first quartile,

• r2 corresponding to non missing rate for second quartile,

• r3 corresponding to non missing rate for third quartile,

• r4 corresponding to non missing rate for fourth quartile,

• m1 corresponding to missing rate for first quartile,

• m2 corresponding to missing rate for second quartile,

• m3 corresponding to missing rate for third quartile, and

• m4 corresponding to missing rate for fourth quartile.

missing_prop <- 0.35

non_missing_prop <- 1 - missing_prop

non_missing_rates_ratio <- c(1, 6.05/5, 7.05/5, 8.35/5)

non_missing_rate_for_first_quartile <- 4 * non_missing_prop / sum(non_missing_rates_ratio)

non_missing_rate_for_second_quartile <- non_missing_rate_for_first_quartile *

non_missing_rates_ratio[2]
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non_missing_rate_for_third_quartile <- non_missing_rate_for_first_quartile *

non_missing_rates_ratio[3]

non_missing_rate_for_fourth_quartile <- non_missing_rate_for_first_quartile *

non_missing_rates_ratio[4]

missing_rate_for_first_quartile <- 1 - non_missing_rate_for_first_quartile

missing_rate_for_second_quartile <- 1 - non_missing_rate_for_second_quartile

missing_rate_for_third_quartile <- 1 - non_missing_rate_for_third_quartile

missing_rate_for_fourth_quartile <- 1 - non_missing_rate_for_fourth_quartile

# Now draw ONE uniform per row, instead of two separate runif() calls

# 1) RNTP

csv_pny_RNTP_mnar <- csv_pny_RNTP_not_missing

u_R <- runif(nrow(csv_pny_RNTP_not_missing))

csv_pny_RNTP_mnar$RNTP <- ifelse(

csv_pny_RNTP_mnar$RNTP <= quantile(csv_pny_RNTP_not_missing$RNTP, 0.25),

ifelse(u_R < missing_rate_for_first_quartile, NA, csv_pny_RNTP_not_missing$RNTP),

ifelse(

csv_pny_RNTP_mnar$RNTP <= quantile(csv_pny_RNTP_not_missing$RNTP, 0.5),

ifelse(u_R < missing_rate_for_second_quartile, NA, csv_pny_RNTP_not_missing$RNTP),

ifelse(

csv_pny_RNTP_mnar$RNTP <= quantile(csv_pny_RNTP_not_missing$RNTP, 0.75),

ifelse(u_R < missing_rate_for_third_quartile, NA, csv_pny_RNTP_not_missing$RNTP),

ifelse(u_R < missing_rate_for_fourth_quartile, NA, csv_pny_RNTP_not_missing$RNTP)

)

)

)

# 2) VALP

csv_pny_VALP_mnar <- csv_pny_VALP_not_missing

u_V <- runif(nrow(csv_pny_VALP_not_missing))

csv_pny_VALP_mnar$VALP <- ifelse(

csv_pny_VALP_mnar$VALP <= quantile(csv_pny_VALP_not_missing$VALP, 0.25),

ifelse(u_V < missing_rate_for_first_quartile, NA, csv_pny_VALP_not_missing$VALP),

ifelse(

csv_pny_VALP_mnar$VALP <= quantile(csv_pny_VALP_not_missing$VALP, 0.5),

ifelse(u_V < missing_rate_for_second_quartile, NA, csv_pny_VALP_not_missing$VALP),

ifelse(

csv_pny_VALP_mnar$VALP <= quantile(csv_pny_VALP_not_missing$VALP, 0.75),

ifelse(u_V < missing_rate_for_third_quartile, NA, csv_pny_VALP_not_missing$VALP),

ifelse(u_V < missing_rate_for_fourth_quartile, NA, csv_pny_VALP_not_missing$VALP)

)

)

)

## Just in case, save the MNAR files as csv files

write.csv(csv_pny_VALP_mnar,

file = "csv_pny_VALP_mnar.csv",

row.names = FALSE)

write.csv(csv_pny_RNTP_mnar,

file = "csv_pny_RNTP_mnar.csv",

row.names = FALSE)

From here, the following R code runs the simulations and save the imputed datasets, the statistical
summaries (with means, quartiles, and their standard errors), and the histograms as .csv or .png files.
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After the output files were generated, I moved these files to the results MNAR directory for organized
safekeeping. Just in case, I also saved the summary statistics in the R environment.

# No imputation

no_imputation_VALP_mnar <- impute_calculate_and_visualize_PUMS(csv_pny_VALP_mnar,

"VALP", no_imputation,

na_rm = TRUE)

no_imputation_RNTP_mnar <- impute_calculate_and_visualize_PUMS(csv_pny_RNTP_mnar,

"RNTP", no_imputation,

na_rm = TRUE)

# Mean imputation

mean_imputation_VALP_mnar <- impute_calculate_and_visualize_PUMS(csv_pny_VALP_mnar,

"VALP",

mean_imputation)

mean_imputation_RNTP_mnar <- impute_calculate_and_visualize_PUMS(csv_pny_RNTP_mnar,

"RNTP",

mean_imputation)

# Random imputation

random_imputation_VALP_mnar <- impute_calculate_and_visualize_PUMS(csv_pny_VALP_mnar,

"VALP",

random_imputation)

random_imputation_RNTP_mnar <- impute_calculate_and_visualize_PUMS(csv_pny_RNTP_mnar,

"RNTP",

random_imputation)

# Nearest neighbor imputation

kNN_imputation_VALP_mnar <- impute_calculate_and_visualize_PUMS(csv_pny_VALP_mnar,

"VALP",

k_NN_relief_imputation_parallel)

kNN_imputation_RNTP_mnar <- impute_calculate_and_visualize_PUMS(csv_pny_RNTP_mnar,

"RNTP",

k_NN_relief_imputation_parallel)

# Regression imputation

regression_imputation_VALP_mnar <- impute_calculate_and_visualize_PUMS(csv_pny_VALP_mnar,

"VALP",

regression_imputation)

regression_imputation_RNTP_mnar <- impute_calculate_and_visualize_PUMS(csv_pny_RNTP_mnar,

"RNTP",

regression_imputation)

Creating Tables of Means, Quartiles, and SEs

The following R code creates an aggregated table of mean and quartile estimates (and their standard errors)
for both target variables (RNTP, VALP) for each missingness condition (MCAR, MAR, MNAR). Each table is
saved as a .csv file; and the three tables for the three missingness conditions are saved as data dfs, a list
of three data.frame objects.

# Defining data_dfs

# and making a list to match method marked in filename

# to the actual method
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data_dfs <- list()

filename_to_imputation_method <- list(

"k" = "Nearest Neighbor Imputation",

"mean" = "Mean Imputation",

"random" = "Random Imputation",

"no" = "No Imputation",

"regression" = "Regression Imputation"

)

### Making VALP and RNTP mean and quartile estimates

### for no missing data situations

## Defining survey object

acs_design <- svrepdesign(

data = csv_pny,

weights = ~WGTP,

repweights = csv_pny[, grep("^WGTP[0-9]+$", names(csv_pny))]

)

## VALP

# Mean estimate, removing NA values

VALP_mean <- svymean(~VALP, design = acs_design, na.rm = TRUE)

# Quartiles, i.e. 25th, 50th, and 75th percentiles

# removing NA values

VALP_quantile <- svyquantile(~VALP, design = acs_design,

quantiles = c(0.25, 0.5, 0.75), na.rm = TRUE)

VALP_quantile_values <- as.numeric(VALP_quantile$VALP)

VALP_quantile_SEs <- as.numeric(SE(VALP_quantile))

## RNTP

# Mean estimate, removing NA values

RNTP_mean <- svymean(~RNTP, design = acs_design, na.rm = TRUE)

# Quartiles, i.e. 25th, 50th, and 75th percentiles

# removing NA values

RNTP_quantile <- svyquantile(~RNTP, design = acs_design,

quantiles = c(0.25, 0.5, 0.75), na.rm = TRUE)

RNTP_quantile_values <- as.numeric(RNTP_quantile$RNTP)

RNTP_quantile_SEs <- as.numeric(SE(RNTP_quantile))

# "No missing" row

no_missing_row_df <- data.frame(

"Imputation.Method" = "No Missing",

"VALP.Mean" = VALP_mean[1],

"VALP.Mean.SE" = SE(VALP_mean),

"VALP.25th" = VALP_quantile_values[1],

"VALP.25th.SE" = VALP_quantile_SEs[1],

"VALP.Median" = VALP_quantile_values[2],

"VALP.Median.SE" = VALP_quantile_SEs[2],

"VALP.75th" = VALP_quantile_values[3],

"VALP.75th.SE" = VALP_quantile_SEs[3],

"RNTP.Mean" = RNTP_mean[1],

"RNTP.Mean.SE" = SE(RNTP_mean),

"RNTP.25th" = RNTP_quantile_values[1],

"RNTP.25th.SE" = RNTP_quantile_SEs[1],

"RNTP.Median" = RNTP_quantile_values[2],

"RNTP.Median.SE" = RNTP_quantile_SEs[2],

"RNTP.75th" = RNTP_quantile_values[3],
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"RNTP.75th.SE" = RNTP_quantile_SEs[3]

)

for(missing_type in c("MAR", "MNAR", "MCAR")){
missing_type_df <- data.frame(

"Imputation.Method" = c("No Imputation", "Mean Imputation", "Random Imputation",

"Nearest Neighbor Imputation", "Regression Imputation"),

"VALP.Mean" = rep(NA,5),

"VALP.Mean.SE" = rep(NA,5),

"VALP.25th" = rep(NA,5),

"VALP.25th.SE" = rep(NA,5),

"VALP.Median" = rep(NA,5),

"VALP.Median.SE" = rep(NA,5),

"VALP.75th" = rep(NA,5),

"VALP.75th.SE" = rep(NA,5),

"RNTP.Mean" = rep(NA,5),

"RNTP.Mean.SE" = rep(NA,5),

"RNTP.25th" = rep(NA,5),

"RNTP.25th.SE" = rep(NA,5),

"RNTP.Median" = rep(NA,5),

"RNTP.Median.SE" = rep(NA,5),

"RNTP.75th" = rep(NA,5),

"RNTP.75th.SE" = rep(NA,5)

)

folder_path <- paste0("results_", missing_type, "/")

files <- list.files(folder_path, pattern = paste0("^stats_.*\\.csv$"),
full.names = TRUE)

for(target_column in c("RNTP", "VALP")){
target_files <- grep(target_column, files, value = TRUE)

for(file in target_files){
df <- read.csv(file)

imputation_method <- filename_to_imputation_method[[sub(paste0(".*", target_column,

"_([^_]+).*"), "\\1",
file)]]

missing_type_df[missing_type_df$Imputation.Method == imputation_method,

paste0(target_column, ".Mean")] <- df$mean

missing_type_df[missing_type_df$Imputation.Method == imputation_method,

paste0(target_column, ".Mean.SE")] <- df$se_mean

missing_type_df[missing_type_df$Imputation.Method == imputation_method,

paste0(target_column, ".25th")] <- df$q25

missing_type_df[missing_type_df$Imputation.Method == imputation_method,

paste0(target_column, ".25th.SE")] <- df$se_q25

missing_type_df[missing_type_df$Imputation.Method == imputation_method,

paste0(target_column, ".Median")] <- df$q50

missing_type_df[missing_type_df$Imputation.Method == imputation_method,

paste0(target_column, ".Median.SE")] <- df$se_q50

missing_type_df[missing_type_df$Imputation.Method == imputation_method,

paste0(target_column, ".75th")] <- df$q75

missing_type_df[missing_type_df$Imputation.Method == imputation_method,

paste0(target_column, ".75th.SE")] <- df$se_q75

}
}
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missing_type_df <- rbind(no_missing_row_df, missing_type_df)

data_dfs[[missing_type]] <- missing_type_df

}

# Export data_dfs as file(s)

write.csv(data_dfs$MAR, file = "data_MAR.csv", row.names = FALSE)

write.csv(data_dfs$MNAR, file = "data_MNAR.csv", row.names = FALSE)

write.csv(data_dfs$MCAR, file = "data_MCAR.csv", row.names = FALSE)

Creating Figure 1

Here is the code used to generate Figure 1 and save it as a .png file.

# Function for cleaning labels

clean_labels <- function(label) {
if (label == "No Imputation") {
return("No\nImputation")

} else if (label == "Nearest Neighbor Imputation") {
return("NN")

} else {
return(str_replace(label, " Imputation", ""))

}
}

# Custom theme for poster clarity

poster_theme <- theme_minimal(base_size = 28) +

theme(

axis.title = element_text(size = 35),

axis.text = element_text(size = 28),

plot.title = element_text(size = 40, face = "bold", hjust = 0.5),

legend.title = element_text(size = 28),

legend.text = element_text(size = 28),

axis.text.x = element_text(size = 24, face = "bold")

)

# Plot storage lists

valp_plots <- list()

rntp_plots <- list()

# Loop through each dataset and generate plots

i <- 1

for (name in names(data_dfs)) {
data_df <- as_tibble(data_dfs[[name]])

desired_order <- c(

"No Missing",

"No Imputation",

"Mean Imputation",

"Random Imputation",

"Nearest Neighbor Imputation",

"Regression Imputation"

)

# VALP
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valp_long <- bind_rows(

data_df %>%

dplyr::select(Imputation.Method, Value = VALP.Mean, SE = VALP.Mean.SE) %>%

mutate(Metric = "Mean"),

data_df %>%

dplyr::select(Imputation.Method, Value = VALP.Median, SE = VALP.Median.SE) %>%

mutate(Metric = "Median")

) %>%

mutate(

Imputation.Method = factor(Imputation.Method, levels = desired_order),

Metric = factor(Metric, levels = c("Mean", "Median"))

) %>%

mutate(

Imputation.Label = sapply(as.character(Imputation.Method), clean_labels),

Imputation.Label = factor(

Imputation.Label,

levels = sapply(desired_order, clean_labels)

),

FillGroup = case_when(

Imputation.Method == "No Missing" ~ paste0("NoMissing_", Metric),

Imputation.Method == "No Imputation" ~ paste0("NoImputation_", Metric),

TRUE ~ as.character(Metric)

),

FillGroup = factor(

FillGroup,

levels = c(

"NoMissing_Mean", "NoMissing_Median",

"NoImputation_Mean", "NoImputation_Median",

"Mean", "Median"

)

)

)

p_valp <- ggplot(valp_long, aes(x = Imputation.Label, y = Value, fill = FillGroup)) +

geom_bar(stat = "identity", position = position_dodge(width = 0.8)) +

geom_errorbar(

aes(ymin = Value - SE, ymax = Value + SE),

position = position_dodge(width = 0.8),

width = 0.2

) +

scale_fill_manual(

values = c(

"NoMissing_Mean" = "darkgreen",

"NoMissing_Median" = "lightgreen",

"NoImputation_Mean" = "darkred",

"NoImputation_Median" = "lightcoral",

"Mean" = "#8372B5",

"Median" = "#A493C6"

),

labels = c(

"NoMissing_Mean" = "Mean\n(No Missing)",

"NoMissing_Median" = "Median\n(No Missing)",

"NoImputation_Mean" = "Mean\n(No Imputation)",
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"NoImputation_Median" = "Median\n(No Imputation)",

"Mean" = "Mean",

"Median" = "Median"

)

) +

labs(

title = paste("VALP:", name),

x = NULL,

y = "VALP Value",

fill = "Metric"

) +

poster_theme +

theme(legend.position = "none") # suppress individual legend

# RNTP

rntp_long <- bind_rows(

data_df %>%

dplyr::select(Imputation.Method, Value = RNTP.Mean, SE = RNTP.Mean.SE) %>%

mutate(Metric = "Mean"),

data_df %>%

dplyr::select(Imputation.Method, Value = RNTP.Median, SE = RNTP.Median.SE) %>%

mutate(Metric = "Median")

) %>%

mutate(

Imputation.Method = factor(Imputation.Method, levels = desired_order),

Metric = factor(Metric, levels = c("Mean", "Median"))

) %>%

mutate(

Imputation.Label = sapply(as.character(Imputation.Method), clean_labels),

Imputation.Label = factor(

Imputation.Label,

levels = sapply(desired_order, clean_labels)

),

FillGroup = case_when(

Imputation.Method == "No Missing" ~ paste0("NoMissing_", Metric),

Imputation.Method == "No Imputation" ~ paste0("NoImputation_", Metric),

TRUE ~ as.character(Metric)

),

FillGroup = factor(

FillGroup,

levels = c(

"NoMissing_Mean", "NoMissing_Median",

"NoImputation_Mean", "NoImputation_Median",

"Mean", "Median"

)

)

)

p_rntp <- ggplot(rntp_long, aes(x = Imputation.Label, y = Value, fill = FillGroup)) +

geom_bar(stat = "identity", position = position_dodge(width = 0.8)) +

geom_errorbar(

aes(ymin = Value - SE, ymax = Value + SE),

position = position_dodge(width = 0.8),
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width = 0.2

) +

scale_fill_manual(

values = c(

"NoMissing_Mean" = "darkgreen",

"NoMissing_Median" = "lightgreen",

"NoImputation_Mean" = "darkred",

"NoImputation_Median" = "lightcoral",

"Mean" = "#8372B5",

"Median" = "#A493C6"

),

labels = c(

"NoMissing_Mean" = "Mean\n(No Missing)",

"NoMissing_Median" = "Median\n(No Missing)",

"NoImputation_Mean" = "Mean\n(No Imputation)",

"NoImputation_Median" = "Median\n(No Imputation)",

"Mean" = "Mean",

"Median" = "Median"

)

) +

labs(

title = paste("RNTP:", name),

x = NULL,

y = "RNTP Value",

fill = "Metric"

) +

poster_theme +

theme(legend.position = "none") # suppress individual legend

valp_plots[[i]] <- p_valp

rntp_plots[[i]] <- p_rntp

i <- i + 1

}

# Ensure we have 3 plots each

if (length(valp_plots) < 3 || length(rntp_plots) < 3) {
stop("`valp_plots` and `rntp_plots` must each have at least 3 elements.")

}

# Combine into 2-row × 3-column layout with a single, shared legend

final_plot <- (valp_plots[[3]] | valp_plots[[1]] | valp_plots[[2]]) /

(rntp_plots[[3]] | rntp_plots[[1]] | rntp_plots[[2]]) +

plot_layout(guides = "collect") &

theme(

legend.position = "bottom",

axis.title.x = element_blank()

)

# Show it on console

print(final_plot)

# Save high-res for poster

ggsave("combined_imputation_comparison.png", final_plot,
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width = 30, height = 20, dpi = 300)

Numerical Results

Here are tables of the numerical results from the simulation study with all values rounded to the nearest
integer.

Imputation Method Mean 25th Percentile Median 75th Percentile
No Missing 586,079 (2,363) 200,000 (2,512) 400,000 (5,024) 700,000 (6,280)
No Imputation 588,699 (3,090) 200,000 (2,512) 400,000 (5,024) 700,000 (6,280)
Mean Imputation 565,964 (2,000) 300,000 (5,024) 523,780 (1,562) 525,000 (4,074)
Random Imputation 570,015 (2,377) 180,000 (1,256) 390,000 (3,768) 700,000 (6,280)
Nearest Neighbor Imputa-
tion

382,530 (2,092) 0 (0) 180,000 (2,010) 525,000 (5,024)

Regression Imputation 580,772 (2,038) 240,000 (1,276) 482,986 (2,004) 732,174 (2,090)

Table 2: Summary Statistics for VALP under MCAR (SE values in parentheses)

Imputation Method Mean 25th Percentile Median 75th Percentile
No Missing 1,666 (4) 880 (5) 1,400 (25) 2,000 (25)
No Imputation 1,655 (6) 860 (8) 1,400 (25) 2,000 (25)
Mean Imputation 1,637 (4) 1,100 (25) 1,604 (24) 1,604 (24)
Random Imputation 1,636 (5) 850 (5) 1,300 (25) 2,000 (25)
Nearest Neighbor Imputation 1,066 (6) 0 (0) 800 (10) 1,600 (25)
Regression Imputation 1,657 (4) 1,000 (6) 1,541 (6) 2,000 (3)

Table 3: Summary Statistics for RNTP under MCAR (SE values in parentheses)

Imputation Method Mean 25th Percentile Median 75th Percentile
No Missing 586,079 (2,363) 200,000 (2,512) 400,000 (5,024) 700,000 (6,280)
No Imputation 578,792 (2,923) 190,000 (2,261) 400,000 (5,024) 700,000 (6,280)
Mean Imputation 558,416 (1,902) 295,000 (2,512) 520,223 (2,456) 520,223 (2,456)
Random Imputation 557,818 (2,301) 180,000 (1,256) 380,000 (2,512) 699,000 (5,024)
Nearest Neighbor Imputa-
tion

377,434 (1,996) 0 (0) 180,000 (2,261) 500,000 (6,280)

Regression Imputation 578,735 (1,882) 240,000 (1,256) 485,597 (2,182) 742,331 (2,115)

Table 4: Summary Statistics for VALP under MAR (SE values in parentheses)

Imputation Method Mean 25th Percentile Median 75th Percentile
No Missing 1,666 (4) 880 (5) 1,400 (25) 2,000 (25)
No Imputation 1,657 (6) 880 (5) 1,400 (25) 2,000 (25)
Mean Imputation 1,639 (4) 1,100 (25) 1,605 (24) 1,700 (25)
Random Imputation 1,645 (5) 850 (5) 1,400 (25) 2,000 (25)
Nearest Neighbor Imputation 1,091 (5) 0 (0) 850 (8) 1,700 (25)
Regression Imputation 1,668 (4) 1,000 (9) 1,562 (5) 2,008 (4)

Table 5: Summary Statistics for RNTP under MAR (SE values in parentheses)
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Imputation Method Mean 25th Percentile Median 75th Percentile
No Missing 586,079 (2,363) 200,000 (2,512) 400,000 (5,024) 700,000 (6,280)
No Imputation 672,848 (3,245) 230,000 (2,512) 500,000 (6,280) 800,000 (10,048)
Mean Imputation 651,467 (2,132) 350,000 (3,768) 609,548 (3,882) 610,000 (3,882)
Random Imputation 652,018 (2,512) 220,000 (1,256) 450,000 (5,024) 750,000 (6,531)
Nearest Neighbor Imputa-
tion

445,576 (2,139) 0 (0) 225,000 (1,256) 610,000 (6,280)

Regression Imputation 643,306 (2,223) 273,137 (1,256) 503,751 (2,973) 800,000 (1,508)

Table 6: Summary Statistics for VALP under MNAR (SE values in parentheses)

Imputation Method Mean 25th Percentile Median 75th Percentile
No Missing 1,666 (4) 880 (5) 1,400 (25) 2,000 (25)
No Imputation 1,841 (5) 1,000 (25) 1,500 (25) 2,300 (25)
Mean Imputation 1,824 (3) 1,300 (25) 1,790 (2) 1,800 (25)
Random Imputation 1,818 (5) 980 (5) 1,500 (25) 2,300 (25)
Nearest Neighbor Imputation 1,212 (5) 0 (0) 980 (5) 1,800 (25)
Regression Imputation 1,802 (3) 1,100 (7) 1,686 (7) 2,200 (3)

Table 7: Summary Statistics for RNTP under MNAR (SE values in parentheses)

Histogram Outputs

Outside of Figure 1, here are the histograms showing the distributions of the target variables under different
imputation methods as generated by function get histogram() run from
impute calculate and visualize PUMS().

(a) VALP: No Impu-
tation (b) VALP: Mean (c) VALP: Random (d) VALP: NN

(e) VALP: Regres-
sion

(f) RNTP: No Impu-
tation (g) RNTP: Mean (h) RNTP: Random (i) RNTP: NN

(j) RNTP: Regres-
sion

Figure 2: Histograms of VALP and RNTP under different imputation methods (MCAR)
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(a) VALP: No Impu-
tation (b) VALP: Mean (c) VALP: Random (d) VALP: NN

(e) VALP: Regres-
sion

(f) RNTP: No Impu-
tation (g) RNTP: Mean (h) RNTP: Random (i) RNTP: NN

(j) RNTP: Regres-
sion

Figure 3: Histograms of VALP and RNTP under different imputation methods (MAR)

(a) VALP: No Impu-
tation (b) VALP: Mean (c) VALP: Random (d) VALP: NN

(e) VALP: Regres-
sion

(f) RNTP: No Impu-
tation (g) RNTP: Mean (h) RNTP: Random (i) RNTP: NN

(j) RNTP: Regres-
sion

Figure 4: Histograms of VALP and RNTP under different imputation methods (MNAR)
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